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The authors propose a general modeling framework called the general monotone model (GeMM), which
allows one to model psychological phenomena that manifest as nonlinear relations in behavior data
without the need for making (overly) precise assumptions about functional form. Using both simulated
and real data, the authors illustrate that GeMM performs as well as or better than standard statistical
approaches (including ordinary least squares, robust, and Bayesian regression) in terms of power and
predictive accuracy when the functional relations are strictly linear but outperforms these approaches
under conditions in which the functional relations are monotone but nonlinear. Finally, the authors recast
their framework within the context of contemporary models of behavioral decision making, including the
lens model and the take-the-best heuristic, and use GeMM to highlight several important issues within
the judgment and decision-making literature.
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The nature of the phenomena typically studied in the behavioral
and social sciences rarely reflects simple input–output functions;
rather, it is often an emergent property of complex social, cogni-
tive, and neural systems. Constructs such as intelligence, anxiety,
prejudice, and depression no doubt correspond to some fundamen-
tal property of the human condition, yet they also have no tangible
corresponding representation in the physical world; they are real-
ized only through psychological measurement. The distinction
between phenomena and data is subtle but important. Phenomena
are the constructs or entities that theories are meant to explain; data
are observables that we use as proxies of the phenomena (Bogen &
Woodward, 1988).

The critical link between data and phenomena is the set of
techniques used for modeling the data, as these techniques allow
one to state facts about the data that are used to support the theory
of the phenomena. Given this critical link, any assumptions made
in the course of modeling data have implications for our under-
standing of the corresponding phenomena. Unfortunately, for the
purposes of (statistical) modeling scientists often make strong
assumptions about functional relationships when describing data,
without realizing (or acknowledging) that assumptions about one’s

data are not mere abstractions but are statements about the nature
of the underlying phenomena to which the data correspond (cf.
Berk, 2004).

The link between the statistical modeling of data and the con-
struction of theories about phenomena exists for any theory lev-
eraged against real data. Although it easy to think of the assump-
tions embodied in statistical models as applying purely at the level
of statistical analysis, these assumptions are often (either implicitly
or explicitly) carried forth into theory. At the implicit level, the
theoretical conclusions drawn from data are conditioned on the
assumptions of the statistical analysis upon which the conclusions
were based. Violations of assumptions undermine statistical con-
clusions validity and, by extension, undermine the process of
theory testing.

However, the link is even more explicit in cases in which the
statistical modeling framework is used as a description of psycho-
logical process. Indeed, it is commonplace for statistical models to
be exapted as paramorphic models of human information process-
ing (Gigerenzer, 1991). For example, the ANOVA framework was
used by Norman H. Anderson’s information integration theory
(Anderson, 1968, 1970, 1981) and Harold H. Kelley’s covariation
theory (Kelley, 1967, 1973) to model impression formation and
causal attribution. More recently, Bayesian models utilizing prin-
ciples from statistics and machine learning have been imported
into psychology under the guise of computational theories of
cognition (Griffiths, Steyvers, & Tenenbaum, 2007; Griffiths &
Tenenbaum, 2006; Tenenbaum, Griffiths, & Kemp, 2006). Of
particular relevance to the present article is multiple-linear regres-
sion, which has had a long and storied history as a descriptive
model of human judgment (Brunswik, 1955; Hammond, 1955;
Hoffman, 1960; Hogarth & Karelaia, 2007; Hursch, Hammond, &
Hursch, 1964), a prescriptive model for clinical judgment (Dawes
& Corrigan, 1974; Dawes, Faust, & Meehl, 1989; Meehl, 1954),
and a normative benchmark against which to compare heuristic
models (Karelaia & Hogarth, 2008; Payne, Bettman, & Johnson,
1993).
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In terms of description, the linear model has been the “work-
horse of judgment and decision-making research” (Hogarth &
Karelaia, 2007, p. 734) for over 60 years. It is also intimately tied
to the evaluation and modeling of heuristic mechanisms put forth
by Gigerenzer and colleagues (Gigerenzer & Goldstein, 1996;
Gigerenzer, Todd, & the ABC Research Group, 1999). Clearly, the
assumptions embodied in the aforementioned statistical models
carry forth into the corresponding theoretical frameworks. Thus,
assumptions made for descriptive purposes, such as the assumption
of linearity, clearly imply that the explanation of the phenomena
requires that assumption. However, what if the data, or the under-
lying phenomena, are not linear?

Our overarching goal in the present paper is to explore the costs
of assuming linearity when linearity does not hold and to propose
an alternative approach to statistical decision making and behav-
ioral decision making that does not require strong assumptions
about one’s data. Our approach relaxes assumptions about func-
tional form and therefore allows one to model any relationship
(linear or nonlinear) characterized by monotonicity. In what fol-
lows, we first review evidence that many psychological phenom-
ena are characterized by nonlinearities. We then describe a general
modeling framework, dubbed the general monotone model
(GeMM), which allows one to model monotone relations without
the need for making precise assumptions about functional form.
Using both simulated and real data, we illustrate that GeMM
performs as well as or better than standard statistical approaches
(including ordinary least squares, robust, and Bayesian regression)
in terms of power and predictive accuracy when the nature of data
is linear but outperforms these approaches under conditions in
which statistical relationships are monotone but nonlinear. Finally,
we recast our framework within the context of contemporary
models of behavioral decision making, including the lens model
and the take-the-best heuristic, and use GeMM to highlight im-
portant issues within the judgment and decision-making literature.

Nonlinearities in Psychological Research

A core assumption of our work is that the functional relation-
ships that describe data within the behavioral and social sciences
are often nonlinear. There are many examples of this within
psychological science. For instance, many psychophysical judg-
ments are approximated by a logarithmic function (e.g., the
Weber–Fechner law). The relationship between practice and
skilled performance is approximated by a power function (e.g., the
power law of practice, Newell & Rosenbloom, 1981; but see
Heathcote, Brown, & Mewhort, 2002). Cumulative retrieval func-
tions in verbal-fluency tasks follow a negatively accelerated ex-
ponential function (Bousfield & Sedgwick, 1944). In economics,
subjective expected utility is nonlinearly related to value, with the
form of the nonlinearity differing for gains, a concave function,
and losses, a convex function (Kahneman & Tversky, 1979). In the
decision-making literature, the relationship between perceptions of
probability and objective probabilities follows a sigmoidal func-
tion (DuCharme, 1970; Erev, Wallsten, & Budescu, 1994),
whereas the relationship between frequency estimates and actual
frequency is sometimes exponential (Lichtenstein, Slovic, Fis-
chhoff, Layman, & Combs, 1978). Finally, perceptions of numbers
by children (Thompson & Opfer, 2008) and adults (Longo &
Lourenco, 2007) are systematically distorted, such that differences

between larger values are compressed relative to smaller values,
roughly following a logarithmic function. The above examples
illustrate the wide variety of data patterns observed in psycholog-
ical science and therefore serve to ground the central thesis of the
work presented here, namely, that the behavioral responses re-
searchers measure are frequently nonlinear.1

To be sure, there is good evidence that phenomena within
psychological science, or at least our measurement of them, are
often nonlinear. Yet, the linear model continues to be one of the
most widely used approaches both to the analysis of data and to the
construction of theories about phenomena. One important cost of
making strong assumptions about the nature of the data is that one
risks missing important statistical relationships that may exist but
that the linear model is ill equipped to detect. However, a far more
important cost is that one could clearly misrepresent the corre-
spondence between the data and the phenomena of interest. As
Berk (2004) noted, “Statistical assumptions invoked to justify an
analysis of real data are not just statistical abstractions but state-
ments about nature. If the assumptions made so that a statistical
analysis plays through are factual nonsense, one surely has to
wonder about the conclusions that follow” (p. 2). Put another way,
by making rigid assumptions in the modeling of data, one implic-
itly endorses those assumptions as a description of the underlying
phenomena. The conclusions drawn from any statistical analysis
are conditional on having satisfied a set of assumptions, and, by
extension, so too are any theoretical statements regarding the
corresponding phenomena based on those data.

If the functions that best describe behavioral regularities are
nonlinear, then the question is how best to model such phenomena.
One approach, of course, is to be as precise as possible when
making assumptions about data and to fit the function directly, for
example, by fitting nonlinear regression models that estimate par-
ticular nonlinear functions (e.g., Young, De Leeuw, & Takane,
1976). This approach is tantamount to endorsing more stringent
assumptions about the data. The benefit of this approach is that one
may gain a deeper understanding of the phenomena of interest.
There are drawbacks, however, as one risks overfitting the data
and losing the ability to predict new observations accurately or,
worse, mischaracterizing the underlying phenomena (MacCallum,
Cornelius, & Champney, 1979). Moreover, in many cases it is
even unreasonable to assume that the behavioral responses ob-
served through psychological measurement necessarily are linearly
related to the underlying psychological variable.

Partly because of the problems with modeling via curve fitting,
a far more common approach to modeling psychological data
involves applying transformations to the data or ignoring the
potential for nonlinearities and modeling the data as if it were
linear. This approach is evidenced by the widespread use of the
linear model in the analysis of data. However, the linear model still
suffers from the same problems as does modeling particular func-

1 In some cases the descriptive label afforded by specifying the partic-
ular functional form may be useful for theoretical purposes (e.g., identify-
ing laws of practice or psychophysics), but in the vast majority of cases it
is unnecessary for descriptive purposes. Indeed, the examples provided
above merely represent a sampling of applications in the behavioral sci-
ences where work has been done to identify the function that best approx-
imates the data.
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tional relationships; in this case, scientists restrict themselves to
the assumption of linearity rather than one or another functional
form. Obviously, there may be times in which both the data and
the corresponding underlying phenomena are linear, in which case
the assumption of linearity is entirely justified both in analyzing
the data and in describing the underlying phenomena. However, in
a vast majority of cases, researchers do not have privileged access
to information beyond the sample at hand that allows them to
validate whether particular assumptions, such as linearity, apply at
the level of the population or are characteristic of the underlying
phenomena. Nevertheless, because the linear model has been
shown to be relatively robust to nonlinearities and violations of
assumptions, it is often used by default (cf. Cliff, 1996).

Unfortunately, data in the psychological sciences rarely afford
one the luxury of making strong inferences about functional form,
linear or otherwise. Making matters more difficult is the fact that
“few social scientific theories offer any guidance as to function or
form whatsoever. Statements like y increases with X (monotonic-
ity)” (Beck & Jackman, 1998, p. 597) typify the level of specificity
offered by most theories (see also Cliff, 1993). Thus, one often
cannot fall back on theory as a means of justifying particular
assumptions.

In this paper, we advocate a third approach to modeling behav-
ioral data—one that involves making less restrictive assumptions
about the data and that is appropriate for modeling any behavioral
regularity characterized by monotonicity. The advantage of our
proposed approach is that it entails making fewer assumptions, so
there is less room for one to violate the assumptions. As we show
below, relaxing assumptions about functional form and modeling
data at the level of monotonicity can yield better statistical power
than models that assume linearity. Moreover, inasmuch as statis-
tical assumptions carry forth into one’s theory of the phenomena of
interest, statistical algorithms that make fewer assumptions should
be preferred as a matter of parsimony. In what follows, we outline
one such algorithm that follows this third approach.

The General Monotone Model

The fundamental goal within GeMM is to find the coefficients
(parameter weights) that minimize the lack of fit between the
predicted values of Y and the observed values. However, unlike
least squares regression procedures, which minimize the squared
deviations between the predicted and observed values and solve
for coefficients that yield the best linear solution, GeMM mini-
mizes the number of incorrectly predicted paired comparisons and
solves for the coefficients that yield the best monotonic (i.e., rank
order) solution.

The power to resolve rank order from paired comparisons stems
from the fact that the number of constraints on the ordered rela-
tionship grows exponentially as a function of N, as given by the
fact that there are N(N � 1)/2 paired comparisons. As pointed out
by Shepard (1962, 1966) in his development of ordinal multidi-
mensional scaling, these ordinal constraints also enable one to
recover close approximations of the metric (i.e., least squares)
solutions from data without computing squared distances. Within
the context of GeMM, the constraints forced on the procedure by
using paired comparisons enable the model to recover close ap-
proximations of the metric regression coefficients, without using
least squares estimation procedures. The advantage of using paired

comparisons as opposed to least squares is that one need not
specify the form of the relationship a priori, and there is no need
to apply (monotone) transformations to the data to make them fit
the assumptions of the model (Cliff, 1993). Moreover, GeMM’s
estimated coefficients are robust to the presence of outliers and the
marginal distribution of the criterion variable, because the rank
order ignores the precise distances between points on the criterion.
The results of our competitive model tests suggest that GeMM is
a stable algorithm that predicts well in a variety of contexts.

The basic framework for implementing GeMM involves three
steps:

1. Identify the set of potential models, with each model
representing a collection of variables that are to be eval-
uated or are theoretically meaningful. In the most general
case, one might be interested in evaluating all possible
subsets (i.e., models) of k � 1 variables.

2. Estimate the parameter values for each model that max-
imize the correspondence between the predicted values
and the observed values. In GeMM, the goal is to find
parameter coefficients that minimize the lack of rank-
order correspondence between the predicted and actual
values, in terms of the underlying dominance structure.

3. Correct for model complexity. For the purposes here, we
have implemented GeMM within the context of the
Bayesian information criterion (BIC) framework, though
other definitions of model complexity can be readily
applied.

In its simplest form, GeMM consists of a one-parameter model
(i.e., one predictor), which is used to predict the criterion of
interest. In this context, GeMM is actually identical to the well-
known measure of association, tau, specified by Kendall (1938).
Thus, to ease the introduction of GeMM, we build the case for
GeMM by drawing parallels with Kendall’s tau and then extend its
application to the multiple predictor case.

To start, assume one wants to know the strength of relationship
between two variables, X (e.g., height) and Y (e.g., weight). Tau is
a valid measure of the strength of any monotonic relationship,
irrespective of the measurement properties of the data, and does
not require strong assumptions about functional form (Gonzalez &
Nelson, 1996).

Tau estimates the degree of monotonic relationship by counting
the number of paired comparisons for which the ordinal relation-
ship among each pair of Xs is concordant (i.e., in agreement) or
disconcordant (i.e., in disagreement) with its corresponding pair of
Ys. For example, in estimating the relationship between height and
weight, one need only count the number of pairs of individuals in
which the taller person is heavier than the shorter person and the
number of pairs of individuals in which the shorter person is
heavier than the taller person. If there are 10 individuals in the
sample, there are 10(10 � 1)/2 � 45 such comparisons. Formally,
tau is defined as

��X, Y� � �C � D�/sqrt[(Pairs � Tp) * (Pairs � Tc)] where (1)

C � Prop�Yi � Yj � Xi � Xj� � Prop�Yi � Yj � Xi � Xj� (2)

D � Prop�Yi � Yj � Xi � Xj� � Prop�Yi � Yj � Xi � Xj� (3)
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Tp � Prop�Yi � Yj � Xi � Xj� � Prop�Yi � Yj � Xi � Xj� (4)

Tc � Prop�Yi � Yj � Xi � Xj� � Prop�Yi � Yj � Xi � Xj� (5)

Pairs � N�N � 1�/2 (6)

In words, C is the proportion of paired comparisons in which the
values of X and Y are in concordance (i.e., the ordinal relationship
between Yi and Yj matches the ordinal relationship between Xi and
Xj). D is the proportion of paired comparisons in which the values
of X and Y are in disconcordance (i.e., the ordinal relationship
between Yi and Yj is opposite the ordinal relationship between Xi

and Xj). Tp is the proportion of paired comparisons in which the
predictor variable is tied, and Tc is the proportion of paired
comparisons in which the criterion variable is tied. Pairs is the total
number of paired comparisons.

Equation 1 can be rescaled to estimate the Pearson product-
moment correlation, r. Following Kendall (1970),

r� � sin��/2��, (7)

where r� is the value of r estimated from tau. Although Kendall’s
�-to-r transformation is not an unbiased estimate of r, it is a close
approximation even at modest sample sizes (N � 50; Rupinski &
Dunlap, 1996). Importantly, prior work has shown that the stan-
dard error of r� is greater than the corresponding standard error of
r calculated on the same samples (Rupinski & Dunlap, 1996), but
where the variance of both estimates shrinks with increases in N.
We return to this issue later.

The advantage of using tau to model statistical relationships is
that it is invariant to monotone transformation. Thus, tau is robust,
in the sense that within the class of monotone relationships, it is
insensitive to the particular functional form. Moreover, the use of
Equation 7 to rescale tau provides a means of estimating the value
of r under any order preserving (monotone) transformation that
linearizes the data, without the need to actually apply the trans-
formation. The advantage of this approach is that it eliminates the
need for the researcher to explore the data to find the one trans-
formation that enables the data to meet the assumptions of the
statistical test. Moreover, it also removes any subjectivity and, for
that matter, implicit bias toward choosing to transform the data or
not and, if so, which transformation to choose.

A model-based approach to monotonic association. Much
as one can express the linear relationship between X and Y with a
least square prediction model, one can express the monotonic
relationship between X and Y in terms of an analogous model, as
defined by

Ŷ � �X (8)

In Equation 8, one wishes to find a value for � that minimizes
the incorrectly predicted paired comparisons. We substitute Ŷ for
X to reflect this subtle change:

��Ŷ, Y� � �C � D�/sqrt[(Pairs � Tp) * (Pairs � Tc)] (9)

C � Prop�Yi � Yj � Ŷi � Ŷj� � Prop�Yi � Yj � Ŷi � Ŷj� (10)

D � Prop�Yi � Yj � Ŷi � Ŷj� � Prop�Yi � Yj � Ŷi � Ŷj� (11)

Tp � Prop�Yi � Yj � Ŷi � Ŷj� � Prop�Yi � Yj � Ŷi � Ŷj� (12)

Tc � Prop�Yi � Yj � Ŷi � Ŷj� � Prop�Yi � Yj � Ŷi � Ŷj� (13)

With one predictor, only the sign of � matters, which reflects the
direction of the relationship of Ŷ and Y. Thus, within the context of
simple monotonic prediction (Equation 8), the goal is to assess the
degree of monotonic association between Y and its predicted value
(Ŷ). Unlike with predicting metric values, no intercept is necessary
because adding a constant to Ŷ (in Equation 8) would not affect
Equations 9–13.

For convenience, it is easiest to think of the betas for the class
of one-parameter models as being constrained to {�1, 0, �1},
such that the relationship between Y and its predicted value (Ŷ) is
always expressed as a positive value of tau, but where the beta
coefficient defines the relationship. The simple model in (8) can be
generalized to include multiple predictors:

Ŷ � �1X1 � �2X2 � . . . � �kXk (14)

In this case, the estimated coefficients allow the variables to
differentially contribute to the prediction equation to determine the
model that maximizes the rank order concurrence between Y and Ŷ.

Equations 9 through 14 provide the computational basis for
computing the degree of monotonic relationship between an addi-
tive combination of the predictors (the Xs) and a criterion variable
(Y). Thus, 1 – � provides the quantity that should be minimized and
is at its maximum when prediction is at chance and is zero when
prediction is perfect (i.e., � � 1).

Generating Weights

Parameter estimation in GeMM requires searching the parame-
ter space to identify coefficients that maximize the value of tau.
Given that the search space grows exponentially with the number
of predictors, the parameter space to be searched is extremely large
even with a small number of predictors. For example, with k � 9
predictors, there are 2k � 9 � 512 possible models, excluding
interaction terms, with each parameter requiring estimation in
metric space. Fortunately, a number of search algorithms have
been developed that make searching complex parameter spaces
fairly straightforward (e.g., genetic algorithms, simulated anneal-
ing, and memetic algorithms). Thus far, we have used genetic
algorithms, which are based on the principles of natural selection
and are particularly effective in large and complex search spaces
(Goldberg, 2002). Genetic algorithms consist of several steps:

1. Generate a random population of parameter vectors.

2. Evaluate the fitness of each member of the population.

3. Identify those models that are “best” and carry them over
to the next population (i.e., elitism).

4. Stochastically sample models (i.e., parents) from the pop-
ulation in the first step, according to their fitness; create
a new population of models (i.e., offspring) by directly
copying the sampled parents or probabilistically recom-
bining the sampled models; and probabilistically add
“noise” to the parameters (i.e., mutation) before adding
the offspring to the new population.

5. Return to Step 2.
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This process is implemented iteratively until the algorithm con-
verges on a solution. Genetic algorithms are known to function
well in complex search spaces, though they have a tendency to find
local minima in some search landscapes. Local minima can be
cross-checked by generating new random starting populations
through repeated runs.

Occam’s Razor: Trading Fit for Complexity

An important consideration in model building is model com-
plexity: One often wishes to find the best fitting statistical model
while minimizing the model complexity (see Myung & Pitt, 2004).
In standard regression contexts, a number of alternatives have been
proposed for trading model complexity for fit, including Akaike’s
information criterion (AIC; Akaike, 1974), Schwarz’s information
criterion (SIC; Schwarz, 1978; also known as the Bayesian infor-
mation criterion; BIC), and the risk inflation criterion (RIC; Foster
& George, 1994), among others. All of these alternatives have
been developed within least squared or maximum likelihood
frameworks, therefore preventing their straightforward application
to nonparametric estimators, such as tau. However, the relationship
between tau and r stated in Equation 7 enables us to work within
the context of the nonparametric estimator tau and still utilize
model selection procedures developed for maximum likelihood
estimation. In the analyses that follow, we employ a version of the
BIC based on R2 (see Raftery, 1995), though other model selection
procedures can be used. Raftery (1995) showed that the BIC could
be estimated from

BIC � N log�1 � R2� � k log�N� (15)

where N is the sample size, R2 is the squared multiple correlation,
and k is the number of parameters. Substituting Equation 7 for the
value of R2 yields

BIC� � N log	1 � 
sin(pi/2���2} � k log�N�. (16)

Equation 16 is the value of the BIC estimated from the �-to-r
transformation. However, because the value of r� shows greater
variability than r, we use an adjusted form of r� based on sample
size and the number of predictors used in the regression. In
particular, we define r�� as

r�� � sin(pi/2�
), (17)

where


 � �N � P � 1�/N. (18)


 is a weighting function based on the number predictors, P,
used in the regression and sample size, N. 
 serves to de-weight
the value of tau for smaller sample sizes and therefore reduces the
variance of the �-to-r transformation. Because 
 goes to 1.0 as N
increases, the asymptotic value of the �-to-r transformation is
preserved.2 Substituting r�� into Equation 15 gives us

BIC�� � N log�1 � r��
2� � k log�N�. (19)

Model selection based on Equation 19 (BIC��) is assessed on the fit
of the model to the data as given by the degree of monotonic
relationship expressed by the �-to-r transformation, adjusted for
model complexity. The reliance on r��

2 as opposed to r2 results in

a model selection procedure that is invariant to monotone trans-
formation—a property we illustrate next.

Competitive Model Testing: How Does GeMM
Compare With the Linear Model?

Equations 9 through 14 provide the computational basis for
GeMM, whereas Equation 19 provides a rule for trading com-
plexity for fit. However, how does GeMM perform relative to
the linear model? To address this question we conducted a
series of modeling competitions and evaluated GeMM’s perfor-
mance on four criteria: (a) the hit rate (i.e., likelihood of
detecting true effects), (b) the false-positive rate (i.e., Type I
error rate), (c) the ability to accurately estimate the true popu-
lation parameter values, and (d) the accuracy of predicting new
observations (i.e., cross-validation). Using these four criteria
with simulated data, we evaluated three statistical modeling
approaches.

1. GeMM with model selection using the BIC�� (GeMM).
Our implementation of GeMM utilized the above equations and
BIC�� to determine model fit. Parameter search was conducted
using a genetic algorithm. The initial population of weight
vectors for the genetic algorithm included 2p weight vectors
estimated via least squares estimation, where p is the number of
predictor variables in the data set. In addition, 2,000 vectors
were generated by randomly perturbing the least squared esti-
mated weights, and 4,000 randomly generated weight vectors
were also included in the initial population.3 The genetic algo-
rithm was run for 10 generations. At each generation the 1,000
vectors with the best fitness value (as determined by the BIC��)
were selected for reproduction, with each new generation con-
strained to 4,000 new members. In addition, the best 500
models from each generation were copied directly to the sub-

2 Analyses using simulated data indicated that model selection using the
BIC without weighting tau by omega led to a slightly liberal selection
criterion as manifested by a higher Type I error rate and power (i.e., hit
rate) than for the OLS-BIC model selection. Note that our use of omega in
Equation 17 is intended to correct for overdispersion in the estimate of r��.
In addition to using the form in Equation 18, we implemented a version in
which 
 � (N � k � 1)/N and one in which r� was adjusted using the
formula for adjusted r2 as given by 1 � (1 � r�

2)(N � 1)/(N � k � 1). As
all of these variations led to approximately the same outcome, we choose
to use (N – P � 1)/N because it corrects for chance at the level of the
experiment, rather than at the level of model selection. We note that a
variety of alternative solutions to overdispersion based on the traditional
least squares maximum likelihood approach may also be appropriate cor-
rections for overdispersion in GeMM, among them variations of the BIC
and the AIC that adjust for variance inflation factor, such as the quasi-AIC
(QAIC; Burnham & Anderson, 1998) and the quasi-BIC (QBIC; Lebreton,
Burnham, Clobert, & Anderson, 1992). However, because these methods
involve reliance on least squares methods to compute a variance inflation
factor, their use seems inappropriate within the GeMM framework.

3 The inclusion of the random weight vectors helps prevent GeMM from
settling into a local minimum dictated by the OLS solution. Although the
inclusion of the least squares regression weights improved the performance of
the OLS-BIC model, these least square weights had little impact on the
performance of GeMM. Indeed, we implemented two different genetic algo-
rithms for searching the parameter space, and they yielded equivalent patterns.
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sequent generation. The crossover rate for reproduction was set
to .85, and the mutation rate was set at .02.

2. Least squares with model selection using the Bayesian
information criterion (OLS-BIC). Our implementation of
OLS-BIC involved utilizing the genetic algorithm for parameter
search and using the BIC as the fitness function. Our implemen-
tation of the BIC used 1 – R2: BIC � N log(1 � R2)� k log(N),
where R2 is the squared multiple correlation, N is the number of
observations, and k is the number of parameters in the model.

3. Least squares regression with model selection using the
Wald statistic (OLS-Wald). Our implementation of OLS-Wald
involved selecting parameters to include in the model based on
significance testing using a Wald test with � � .05.

The above three approaches were evaluated on data generated
from a linear equation with a continuous multivariate distribution
and six predictors, three of which were null, and where the other
three had coefficients of .5, .3, and .2. Thus, the base equation
generating the data for the linear environment was

Y � .5X1 � .3X2 � .2X3 � 0X4 � 0X5 � 0X6 � 1 � e (20)

with e � N(0, 1). For each simulation run two samples were
created: One sample was used to estimate the model parameters,
and the second was used for cross-validation. We manipulated
sample size across three levels (N � 50, 100, and 250). These
analyses were then repeated using a nonlinear environment, which
was created by using Equation 20 but then raising Y to the power
of 5 (Y5). All analyses included 200 simulation runs. The GeMM
and OLS-BIC models were conducted with MatLab code available
from the authors or online at http://www.bsos.umd.edu/psyc/

dougherty/gemm.html; the OLS-Wald analyses utilized the
built-in MatLab multiple-regression function.

Model Comparison Using Simulated Data

Recovering Latent Data Structures

Figure 1 plots the performance of GeMM in terms of the hit and
false-discovery rates compared to both versions of least squares
regression for the linear environment. Two observations should be
evident. First, when data conform to strict linearity and multivar-
iate normality, both versions of least squares regression have
slightly better statistical power than GeMM. Thus, as should be the
case, GeMM is inferior to the linear model when the data are
actually linear, though these advantages are rather modest. For
example, when N � 100, GeMM shows equivalent power for
detecting the parameter with the strongest relationship (� � .5)
and nearly equivalent power for the second strongest parameter
(� � .3). This is remarkable, given that GeMM ignores the metric
properties of the data and fits only information contained in the
ranks.

Next we investigated GeMM in comparison to OLS under the
realistic assumption that data do not typically conform to lin-
earity. Figure 2 plots the results of the simulations for the
nonlinear environment. In this case, GeMM shows a substantial
advantage over the linear model across all sample sizes. For
example, for N � 100, GeMM shows an improvement of 24%
over both versions of OLS in detecting the second strongest
parameter (� � 0.3); it shows an improvement of 24% over

Figure 1. Hit and false alarm rates as a function of sample size for GeMM, OLS-BIC, and OLS-Wald for a
linear environment. GeMM � general monotone model; OLS-BIC � least squares with model selection using
the Bayesian information criterion; OLS-Wald � least squares regression with model selection using the Wald
statistic.
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OLS-BIC and a 15% improvement over OLS-Wald for detect-
ing the weakest parameter (� � 0.2). Thus, the assumption of
linearity made by multiple regression, which is advantageous
for the linear environment, is a liability for modeling nonlinear
environments. Inasmuch as the nature of data in psychological
science is nonlinear, the assumption of linearity will be a
liability more often than not. GeMM, on the other hand, is
robust to nonlinearity, while showing false discovery rates
similar to those for OLS-BIC.

Can GeMM Provide Relatively Accurate Estimates of
the Metric Population Parameters?

Researchers are often concerned with how much a particular
variable contributes to the overall predictive accuracy of the
model. Therefore, it is useful to know whether GeMM can provide
reasonable estimates of the population parameters. In other words,
how accurately can GeMM recover the metric parameters that
created the observed data?

Figure 3 plots the mean normalized betas estimated by each
model.4 The population parameters correspond to .5, .3, and .2 for
the first three parameters and zero for the last three parameters.
GeMM’s estimates approximate the population parameters. More-
over, GeMM’s estimates of these parameters are robust across the
environments.

How can GeMM recover the population parameters without
capitalizing on the metric properties of the data? The answer to this
question stems from the fact that the number of constraints on the
rank order increase exponentially with sample size—a property of
the method of paired comparisons that Shepard (1962, 1966)

argued allowed ordinal multidimensional scaling to approximate
metric properties of the data. With reasonable sample sizes, the
number of constraints on the ordered relationship is quite high. For
example, with N � 100 and no ties, there are 100(100 � 1)/2 �
4,950 paired comparisons required for determining the best pa-
rameters for optimizing the rank order correspondence between Y
and Ŷ. As the number of observations in the rank order increases,
the less freedom each value has to vary about its true value. Thus,
as N increases, more precise estimates of the betas are required for
minimizing rank order inversions. In the limit, these estimates
should converge toward the true population parameters. Note,
however, that the betas required for minimizing rank order inver-
sions need not correspond exactly to the betas required for mini-
mizing squared error. Therefore, GeMM’s estimates are not guar-
anteed to be unbiased estimates of the population parameters,
though inspection of Figure 3 would suggest that they are close
approximations.

Predictive Accuracy

Although Figures 1 and 2 clearly show that GeMM shows
statistical power equal to or better than least squares regression
techniques, how does it do in predicting new observations? To
assess this, we compared GeMM with OLS-BIC and OLS-Wald
using cross-validation. The results of these comparisons are pre-
sented in Figures 4 and 5, which plot the proportion of concor-

4 The parameter value was set to zero for any parameter not recovered by
the model.

Figure 2. Hit and false alarm rates as a function of sample size for GeMM, OLS-BIC, and OLS-Wald for a
nonlinear environment. GeMM � general monotone model; OLS-BIC � least squares with model selection
using the Bayesian information criterion; OLS-Wald � least squares regression with model selection using the
Wald statistic.
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dances out of all pairwise comparisons, p(c) � C/[N(N � 1)/2]),
and the estimated tau for a sample size of 100. As can be seen,
GeMM shows slightly less predictive accuracy in the cross-
validation sample than do both OLS procedures in the linear
environment, but it shows modest improvement in predictive ac-
curacy in the nonlinear environment. The principle reason that
GeMM shows better predictive accuracy in the nonlinear case is
because it is better at identifying the true model underlying the
data. Taken together, these results indicate, that GeMM shows
little loss of predictive accuracy in the linear environment, al-
though it is designed to model only monotonicity and shows better
predictive accuracy than the linear model for nonlinear environ-
ments.

A natural response to our demonstration above is that the linear
model does poorly in the nonlinear environment because the
appropriate model is indeed nonlinear. We of course agree with
this position but add that it is not always clear when data or the
corresponding underlying phenomena are nonlinear. Moreover,
even if one detects nonlinearities within one’s data, it is virtually
impossible to know precisely the forms of the nonlinearities and to
verify that the nonlinearities are representative of the larger pop-
ulation of scores, as opposed to being idiosyncratic (i.e., random)
properties of one’s data set. Just as few real data sets truly reflect
multivariate normality (Micceri, 1989), it is also likely that few
real data sets truly reflect linearity. Modest and perhaps even
nonobvious departures from linearity can undermine statistical
conclusions.

To illustrate this latter point, we reanalyzed data from Engle,
Tuholski, Laughlin, and Conway (1999). Engle et al. were inter-
ested in evaluating the factor structure of various measures of
cognitive ability. Our use of Engle et al.’s data is somewhat
different: We were interested in using their data to evaluate
whether GeMM had any practical advantages over various least
squares alternatives when applied to data where the true underly-
ing statistical relationship is unknown.

Engle et al. (1999) had 133 participants complete 12 measures
of cognitive ability. To reduce computational time, we used only
10 of the 12 available variables. These included two measures of
fluid intelligence (Raven’s Progressive Matrices, Cattell culture
fair test), two standardized achievement tests (verbal SAT and
quantitative SAT), three measures of short-term memory span
(forward span, backward span, keeping track), and three measures
of working memory span (operation span, reading span, and count-
ing span). The use of cognitive ability data for evaluating GeMM
was motivated by the assumption that, among real-world measured
variables, measures of cognitive ability generally show reasonable
distributional properties and approximately satisfy the assumptions
of multivariate normality.

As a first step, we analyzed the data to determine whether they
met multivariate normality. The results of these analyses were
somewhat ambiguous: the Henze–Zirkler test for multivariate nor-
mality (p � .12) and the Mardia multivariate test of kurtosis (p �
.09) failed to reveal significant departures from multivariate nor-
mality, whereas the Mardia test for multivariate skewness was
significant (p � .05).5 Thus, we concluded that whatever depar-
tures from multivariate normality were present in the data were
modest at worst and did not justify transformation.

We examined the statistical power of GeMM versus the two
least squares approaches used on the simulated data, plus an
additional four approaches (see Appendix), including two versions
of robust regression, Bayesian regression with normal priors, and
ridge regression. We randomly sampled 50% of the total sample to
form an estimation sample and used the remaining 50% as the
holdout, or cross-validation, sample. For each run, we estimated
the model on the estimation sample and then applied the statistical
model to predict observations in the cross-validation sample. This
was repeated 200 times for each approach. For the sake of com-
parison, we used the model based on the full sample as the
criterion for evaluating statistical power. When we used the full
sample, all approaches identified a two-parameter model consist-
ing of quantitative SAT and Cattell’s culture fair test as the best fit
model for predicting Raven’s Progressive Matrices. However, how
did the three techniques compare when the estimation sample was
reduced by 50%?

The results comparing GeMM to the six alternatives based on
least squares are presented in Table 1, which provides the proba-
bility of recovering each parameter, and Table 2, which provides
the fit and cross-validation statistics. As should be clear from
examining Table 1, GeMM shows a substantial power advantage
over OLS-BIC but especially over OLS-Wald. The robust and

5 Matlab code for the Henze–Zirkler and Mardia tests was obtained from
the matlab file exchange (Henze–Zirkler test, Trujillo-Ortiz, Hernandez-
Walls, Barba-Rojo, & Cupul-Magana, 2007; Mardia test, Trujillo-Ortiz &
Hernandez-Walls, 2003).

Figure 3. Mean normalized parameter estimates of recovered parameters
for GeMM, OLS-BIC, and OLS-Wald in the linear and nonlinear environ-
ments for a sample size of 100. GeMM � general monotone model;
OLS-BIC � least squares with model selection using the Bayesian infor-
mation criterion; OLS-Wald � least squares regression with model selec-
tion using the Wald statistic.
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Bayesian procedures fared better than OLS-Wald but also under-
performed relative to GeMM and OLS-BIC. In fact, GeMM
showed roughly a 16% increase in power over its nearest compet-
itor (OLS-BIC) for detecting quantitative SAT, though it showed
a slight decrease in power (roughly 3%) for detecting the Cattell
culture fair test. Closer inspection of these two variables revealed
that quantitative SAT was slightly nonlinearly related to Raven’s
Progressive Matrices (the best fit quadratic function accounted for
nearly 5% more variance than the linear function when quantita-
tive SAT was regressed onto Raven’s), whereas Cattell showed
little nonlinearity.

Turning now to predictive accuracy, how well did the various
procedures fare in cross validation? These results are presented in
Table 2. As can be seen, GeMM outperformed its competitors in
terms of monotonic prediction, tau and P(C), while yielding a
value for the multiple r that approximated the best fit linear model
(OLS-BIC) and which was higher than the multiple r obtained by
OLS-Wald, the robust procedures, and Bayes. Thus, although
GeMM ignores information captured by the metric fit, it predicts
as well or better than the least squared alternatives. The only
procedure to outperform GeMM was ridge regression, which is a
more complex modeling approach that uses all of the available
predictors.

What have we learned from the above analyses? First, it is clear
that GeMM is a useful tool for statistical modeling. Obviously,
under conditions in which the data are actually linear, least squares
regression procedures will be more powerful. However, under the
more realistic conditions in which the data are monotone but
nonlinear, GeMM is more powerful. Second, GeMM is robust to
departures from linearity in a way that standard regression proce-

dures are not. Thus, there is no need to test out various transfor-
mations on the data to see which one “works” and no need for
outlier deletion. The implications of these first two points, how-
ever, go well beyond simple lessons for statistical modeling, as
they go to the heart of the fundamental goal of science: Making
assumptions about the nature of data that do not actually hold, just
so a statistical analysis can be performed, can ultimately affect
one’s theoretical description of the corresponding phenomenon.
The evidence taken in support of a theory about phenomena should
not rest on questionable assumptions required for the statistical
analysis, nor should such evidence be conditional on a particular
transformation. Ideally, statements about phenomena should re-
quire as few assumptions as necessary. GeMM allows one to
model one’s data without recourse to data transformation or the
default assumption of linearity. A final finding from the initial set
of analyses above is that the predictive accuracy of GeMM is as
good or better than that of linear regression—a finding that is of
particular relevance for evaluating models of behavioral decision
making.

GeMM as a Model of Choice

Having developed GeMM as a tool for describing and ana-
lyzing data, we now turn to explicating GeMM within the
context of theoretical models of decision making. Of note, we
make no claims as to the psychological plausibility of GeMM as
a mechanistic-level description of decision behavior. Rather,
we view GeMM as serving two complementary purposes. One
purpose concerns prescriptive decision making, and the other
concerns the description of decision making at the computa-

Figure 4. Proportion of concordances for the estimation and cross-validation sample in the linear and nonlinear
environments for a sample size of 100. GeMM � general monotone model; OLS-BIC � least squares with
model selection using the Bayesian information criterion; OLS-Wald � least squares regression with model
selection using the Wald statistic.
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tional level. When used for prescription, GeMM can be viewed
as a model of choice that combines information in a way that
respects the monotonic properties of the data when allotted
unlimited time and computational resources. The second pur-
pose concerns descriptive modeling and judgment analysis;
GeMM allows one to describe cue utilization, in the same way
that multiple regression has been used within the context of the
lens model (Hammond, Hursch, & Todd, 1964; Karelaia &
Hogarth, 2008). The use of GeMM in this way has allowed us
to identify important theoretical issues that hitherto have been
largely neglected in evaluating heuristic models of human judg-

ment. Before addressing these issues, however, we first de-
scribe a few alternative approaches to modeling decision-
making behavior.

Egon Brunswik’s lens model framework (Brunswik, 1955;
Brunswik & Herma, 1951) is one of the most widespread ap-
proaches to modeling judgment and decision making. One of the
primary goals of the framework is to understand how people
utilize information in inference tasks. Hammond et al. (1964)
were among the first to use multiple-linear regression to parame-
terize and estimate the components of the lens model, and the use
of the linear model for estimating parameters in the lens model

Figure 5. Mean Kendall’s tau correlations for the estimation and cross-validation sample in the linear and
nonlinear environments for a sample size of 100. GeMM � general monotone model; OLS-BIC � least squares
with model selection using the Bayesian information criterion; OLS-Wald � least squares regression with model
selection using the Wald statistic.

Table 1
Probability of Recovering Each Predictor From N/2 Observations

Procedure
Operation

span
Reading

span
Verbal
SAT

Quantitative
SAT

Backward
span

Forward
span

Keeping
track

Counting
span Cattell

GeMM 0.04 0.075 0.075 0.865 0.02 0 0.095 0.085 0.965
OLS-BIC 0.05 0.035 0.03 0.71 0.06 0.005 0.135 0.095 1
OLS-Wald 0 0.05 0 0.435 0.02 0.07 0.045 0.05 1
RLS-Wald (Huber) 0 0.05 0.005 0.575 0.005 0.045 0.02 0.045 1
RLS-Wald (bi-square) 0 0.07 0.01 0.585 0 0.04 0.015 0.055 0.985
BayesianWald 0 0.028 0 0.389 0.011 0.072 0.038 0.022 1
Ridge regression — — — — — — — — —

Note. The two predictors in bold (Quantitive SAT and Cattell) represent the two predictors that were identified by all of the model selection procedures
when using the full data set (N � 133). The numbers in each cell represent the probability of recovering each predictor when using only half of the data
set (N/2 � 66). Note that GeMM has the highest combined recovery probabilities, suggesting that it has power superior to all of the least squared
alternatives. The ridge regression model was not used for model selection and therefore used all nine predictors for estimation. GeMM � general monotone
model; OLS-BIC � least squares with model selection using the Bayesian information criterion; OLS-Wald � least squares regression with model selection
using the Wald statistic; RLS-Wald (Huber) � robust least squares with Huber adjustment; RLS-Wald (bi-square) � robust least squares with bi-square
adjustment; Bayesian Wald � Bayesian regression using normal priors with model selection using the Wald statistic; Cattell � Cattell culture fair test.
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subsequently became commonly accepted practice (Hammond et
al., 1964; Hartwig & Bond, 2011; Hastie & Kameda, 2005; Hursch
et al., 1964; Steinmann & Doherty, 1972; Tucker, 1964; York,
Doherty, & Kamouri, 1987; for a review, see Karelaia & Hogarth,
2008).

The lens model makes two key assumptions regarding deci-
sion behavior. First, it is assumed that the decision maker has
some knowledge of the relationship between the criterion of
interest (Y) and the cues (x�is) as they exist in the environment.
Second, judgment about the criterion variable is assumed to be
based on an additive combination of some or all of the cues
known to the decision maker. Given these first two assump-
tions, it is easy to see how the linear model can be used to
parameterize or estimate which cues a participant utilized in
making a set of judgments and how much weight each cue was
given. The configuration of cues and their respective weight-
ings are taken as the decision maker’s policy. This policy can
then be compared to the optimal policy, as given by the param-
eters estimated on the environment. Clearly, the use of the
linear model to characterize a decision maker’s policy entails
all of the assumptions involved in multiple-linear regression,
including that of linearity. Although in the General Discussion
we describe the lens model components in detail and reconcep-
tualize them within the GeMM framework, we do not use the
lens model in its entirety here. Instead we evaluate its inference
engine (i.e., the linear model) in comparison to GeMM on their
ability to cross-validate— to predict a holdout sample with cue
weights estimated on an estimation sample.

As an alternative model of decision making, Gigerenzer,
Hoffrage, and Kleinbö1ting (1991) proposed the probabilistic
mental models (PMM) theory for modeling the environment–
behavior interaction. Although this framework builds on the
core ideas of Brunswik’s (1955) lens model, it does not rely on
multiple linear regression. Instead, PMM postulates that people
possess a toolbox of heuristic mechanisms that exploit the
properties of the environment. One of these heuristic mecha-
nisms is take the best (TTB), which has received a great deal of
attention in the literature (see Gigerenzer & Goldstein, 1996;
for a critique, see Dougherty, Franco-Watkins, & Thomas,
2008). TTB is a three-step algorithm that involves (a) ordering
predictor variables according to their predictive accuracy (de-
fined as cue validity, see below), (b) searching the predictor
variables from most to least predictive, and (c) terminating
search when a cue is found that discriminates between alterna-
tives in a paired comparison.

TTB defines the “best” predictor in terms of cue validity,
where cue validity is given by vi � p{t(a) � t(b)�[ci(a) � �]
and [ci(b) � –]}. The validity (vi) of cue i, denoted ci, on target
variables a and b, t(a) and t(b), is given by the relative fre-
quency with which t(a) � t(b), given that a is positive on cue
i and b is negative in reference class R. The terms t(a) and t(b)
correspond to the value of the target variable for case a and b,
respectively, where the choice set, {a, b}, is a paired compar-
ison. Note that the formula for cue validity can be rewritten in
terms of the number of paired comparisons in which the pre-
dictor and criterion are in concordance divided by the number

Table 2
Fit Indices and Cross-Validation Statistics for All Seven Regression Procedures

Procedure BIC�� BIC P(C) � r k�

GeMM
Estimation �32.4973 �40.4052 0.7422 0.5633 0.7255 2.22
Cross-validation 0.7148 0.5071 0.6989

OLS-BIC
Estimation �29.6933 �42.7902 0.7312 0.5432 0.7305 2.12
Cross-validation 0.7122 0.5042 0.6998

OLS-Wald
Estimation �25.7679 �40.9317 0.6998 0.5108 0.7158 1.67
Cross validation 0.6875 0.4861 0.6778

RLS-Wald (Huber)
Estimation �26.9341 �41.4593 0.7093 0.5214 0.7200 1.74
Cross-validation 0.6981 0.4988 0.6876

RLS-Wald (bi-square)
Estimation �27.028 �41.1566 0.7094 0.5227 0.7188 1.76
Cross-validation 0.6985 0.5002 0.6876

Bayesian Wald
Estimation �27.0316 �41.3713 .6943 .5060 .7144 1.56
Cross-validation .6856 .4875 .6821

Ridge regression
Estimation �1.427 �9.7332 .7368 .5472 .7144 9
Cross-validation .7195 .5120 .6973

Note. BIC � Bayesian information criterion; BIC�� � Bayesian information criterion based on the weighted
�-to-r transformation; P(C) � percent concordance; � � Kendall’s tau correlation; r � Pearson’s r correlation;
k � number of parameters in model; GeMM � general monotone model; OLS-BIC � least squares with model
selection using the Bayesian information criterion; OLS-Wald � least squares regression with model selection
using the Wald statistic; RLS-Wald (Huber) � robust least squares with model selection using the Wald statistic;
RLS-Wald (bi-square) � robust least squares with model selection using the Wald statistic; Bayesian Wald �
Bayesian regression using normal priors with model selection using the Wald statistic. The ridge regression
procedure does not allow for model selection and therefore used all 9 predictors.
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of paired comparisons that are either concordances (C) or
disconcordances (D): v � C/(C � D).6 It should be clear that
the formula for cue validity is an index of monotonic fit, in the
same spirit as tau but without penalizing the numerator for
disconcordances and ignoring ties in the denominator. Thus,
TTB can be viewed as an alternative model to GeMM for
capturing monotonicities.

TTB proceeds by evaluating the cue values in the order of their
validity. If the cue discriminates, TTB chooses whichever choice
alternative has the positive cue value. If the cue does not discrim-
inate, TTB evaluates the next most valid cue and so forth. If none
of the cues discriminate, an alternative is chosen at random.

TTB differs from the linear model in two respects. First, TTB
uses only a single cue at a time, whereas the linear model inte-
grates across cues. Second, the fit criterion for TTB is based on
monotonicity, whereas the fit criterion for the linear model is based
on least squares. Thus, any differences in fit when comparing the
linear model with TTB could in principle be due to whether or not
the cues were integrated, to differences in the fit criteria, or to both.
Indeed, our analyses of GeMM in the first half of this paper shows
that the use of the linear model in predicting observations in a
nonlinear monotone environment leads to suboptimal choice be-
havior. Of course, it remains to be seen whether GeMM outper-
forms other algorithms that model monotonicity, such as TTB.

We evaluated the predictive accuracy of GeMM relative to the
linear model and TTB within the context of addressing three
theoretical issues. The first issue centers on the topic of parsimony.
An important construct in evaluating descriptive models of human
choice involves the need for such descriptions to respect the
cognitive limitations of the human decision maker. Simon (1956)
dubbed this bounded rationality, and it has become an increasingly
important consideration in the decision-making literature as the
focus has turned to describing decision making in terms of heu-
ristic mechanisms. We illustrate that modeling the fit/parsimony
trade-off with variable selection criteria such as the BIC can shed
new light on the issue of bounded rationality and its relation to
models of cue integration, such as the linear model and GeMM.

The second issue addresses the need to minimize incorrect
choices and maximize correct choices. We illustrate that models
that focus solely on maximizing correct choices, such as TTB, can
yield a seemingly paradoxical effect: The number of incorrect
choices can increase at a disproportionately greater rate than
correct choices. The use of BIC�� for model selection can prevent
this from happening.

The third issue concerns the very simple proposition that
choice models based on a linear least squares fit criterion can be
ill equipped for accurately modeling choice behavior. Note that
GeMM’s goal of maximizing monotonic fit (i.e., tau) is con-
sistent with the goal of maximizing choice but that the parsi-
mony correction ensures that there is a trade-off between choice
accuracy and model complexity. Thus, the use of the BIC may
come at a cost of choice accuracy, even though the goal of
GeMM is to maximize tau. The contrast with the linear model
is that linear least squares regression does not directly model
choice behavior but rather infers choice accuracy from the least
squares fit. We illustrate that the best fit linear model can yield
choice accuracy far below that of GeMM, even in cases in
which the linear model accounts for a substantially greater
proportion of the variance.

Issue 1: A Rational Model of Behavioral Choice
Should Trade Fit for Parsimony

A parsimonious algorithm is one that uses as little information
as necessary to do the job. Simplicity is an important element of
Simon’s bounded rationality and one that we model. Ideally, one
wishes to maximize the fit or predictive accuracy of an algorithm,
while simultaneously retaining parsimony. The notion of parsi-
mony has been a central construct of the fast and frugal heuristic
tradition. Gigerenzer and Goldstein (1996) and others have argued
that fast and frugal heuristics require less information upon which
to make a decision. Within this tradition, parsimony (i.e., frugality)
is defined locally for each paired comparison (i.e., the number of
cues one must search in order to discriminate between two ob-
jects). We refer to this form of frugality as local parsimony
because it applies locally to individual pairs of objects.

Yet, local parsimony (or frugality) as used in the study of fast
and frugal heuristics is quite distinct from the notion of parsimony
as used in the statistical and computational modeling literatures.
Within these literatures, parsimony is defined over the entire class
of objects in the judgment set—that is, how many cues are needed
to maximize the fit to all of the data (i.e., all paired comparisons).
This sort of parsimony is made explicit in model selection proce-
dures such as the BIC, AIC, and RIC and is indexed by k in the
BIC. We refer to this form of parsimony as global parsimony,
because it applies globally across the entire data set.

Unfortunately, past evaluations of TTB and other fast and frugal
heuristics have largely neglected the issue of global parsimony.
Although the definitions of local and global parsimony seem to
imply different metrics for assessing the parsimony of a model,
they are closely related. For example, within the context of GeMM
and multiple regression, the local parsimony of the model is
always identical to its global parsimony. That is, for each and
every paired comparison, GeMM and OLS use an additive com-
bination of k cues. Thus, both the local and global parsimony of
GeMM and OLS are equal to k. Within the context of TTB, the
global parsimony of the model sets the upper bound for local
parsimony. That is, TTB may require k cues to make inferences
across the entire class of objects (i.e., all possible paired compar-
isons) but may only use ki

� cues on the ith paired comparison,
where ki

� � k. Global parsimony, therefore, is given by max(ki
�), or

the maximum number of cues required for any single paired
comparison. In most analyses of TTB, researchers report the mean
value of k�, the average local parsimony, which will often be less
than k, the global parsimony. The question we address here is, how
does TTB perform relative to GeMM and OLS when global
parsimony (k) is held constant?

To illustrate the importance of modeling global parsimony, we
reanalyzed the data set used in the initial presentation of the TTB
heuristic: the cities data set. This data set consisted of all cities in
Germany with more than 100,000 inhabitants (i.e., the 83 largest
German cities by population), their population value (the crite-
rion), and nine binary predictor cues (Gigerenzer & Goldstein,
1996). The predictor cues included (a) national capital (Is the city

6 Cue validity rewritten in terms of concordances and disconcordances,
C/C � D, is similar to the well-known gamma correlation, in which the
rank order correlation between two variables is defined as (C � D)/(C �
D) (Goodman & Kruskal, 1979).
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the national capital?); (b) exposition site (Was the city once an
exposition site?); (c) soccer team (Does the city have a team in the
major league?); (d) intercity train (Is the city on the intercity line?);
(e) state capital (Is the city a state capital?); (f) license plate (Is the
abbreviation only one letter long?); (g) university (Is the city home
to a university?); (h) industrial belt (Is the city in the industrial
belt?); (i) East Germany (Was the city formerly in East Ger-
many?).

We used a split-half cross-validation procedure to examine the
performance of the models using three metrics: the value of BIC��,
Kendall’s tau, and the proportion of concordances. The BIC�� for
GeMM was calculated as shown above, where k is based on the
number of parameters included in the model. The BIC�� for TTB
was computed by calculating the equivalent of Kendall’s tau from
the concordances, disconcordances, and ties derived from the TTB
algorithm. The value of k used in the BIC�� formula was determined
by the total number of cues needed to resolve all pairwise com-
parisons. In this sense, k is actually identical to the max ki

�. For the
analyses presented below, we varied the value of k parametrically
from 1 to P, where P was the number of predictors in the data set.
For example, when k � 1, each model was forced to choose the
best one-parameter model, when k � 2, each model was con-
strained to find the best two-parameter model, and so forth. For
each value of k, we conducted 100 Monte Carlo runs, with each
run consisting of estimation and cross-validation samples. The best
fitting parameters for GeMM and OLS were estimated on the
estimation sample using the genetic algorithm (restricting the
algorithm to including only k non-zero parameters) and then ap-
plying this model to the cross-validation sample. For TTB, the
estimation sample was used to estimate the cue validity of all P

predictors and then to select and order the k best one-parameter
models according to cue validity. The cue ordering of the selected
k one-parameter models was then applied to the cross validation
sample.

Of note, within TTB one cannot directly estimate a Pearson’s r.
However, given that TTB yields all of the components necessary
to compute Kendall’s tau, it is possible to use the �-to-r conversion
as a proxy for the Pearson’s r, which allows us to use Equation 19
for BIC��, making a straightforward comparison between TTB,
GeMM, and OLS.

Model comparison results. Figure 6 plots the mean values
for BIC�� as a function of the number of predictors included in the
model. Two things are of note. First, as illustrated by the U-shaped
curve, there is a clear trade-off between number of cues and the
value of BIC��. According to all three algorithms, on average the
best model (lowest BIC��) derived from the estimation sample
included two parameters. More generally, across the three algo-
rithms, only models with four or fewer parameters consistently
showed negative values for BIC��. Thus, even though accuracy
continues to improve as more cues are utilized, model selection
using the BIC�� leads us to prefer models with four or fewer
parameters, with the best overall fit shown for models with two
parameters. Second, GeMM provides the best overall fit to the
estimation sample, as evidenced by lower values of the BIC�� (more
negative).

We now turn to the assessment of model accuracy. Figure 7
plots the mean percentage of concordances, whereas Figure 8 plots
mean values of tau as a function of number of cues for the
estimation sample (top panel) and the cross-validation sample
(bottom panel). Consistent with the analysis of BIC��, GeMM

Figure 6. Mean value of BIC�� plotted as a function of the number of parameters (k) for each algorithm.
GeMM � general monotone model; OLS-BIC � least squares with model selection using the Bayesian
information criterion; TTB � take-the-best model.
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outperforms TTB and OLS-BIC on the estimation sample on both
measures for all values of k. The results for the cross-validation
sample illustrate two interesting findings. First, GeMM clearly
outperforms both OLS-BIC and TTB for models with fewer pa-
rameters. In fact, the predictive accuracy of GeMM (percentage of
concordances and tau) exceeds that of TTB and linear regression
when the algorithms are restricted to k � 4, indicating that when
disconcordances are factored into the assessment of model fit,
GeMM is the clear winner. Note that GeMM is the only model
optimized on tau, so it is perhaps unsurprising that it outperforms
TTB and OLS on prediction. However, the critical point here is
that within least squares regression, one assumes interval level
data. Under this assumption, one would expect that maximizing fit
at the interval level presupposes that the ordered relationships are
well accounted for. As we show below, however, this is not
necessarily the case. Moreover, GeMM still does better than both
TTB and OLS in terms of percent correct. Thus, after equating the
three models for number of parameters and trading fit for com-
plexity, GeMM appears to show a reasonable advantage in pre-
dictive accuracy. Interestingly, the advantage for GeMM is not as
evident when evaluating tau (see Figure 8).

Second, when allowed to search all nine cues, TTB outperforms
both GeMM and OLS-BIC in terms of the proportion of concor-
dances. However, the Kendall’s tau for the three-parameter GeMM
model (M � 0.463) is actually nominally higher than tau for the
nine-parameter TTB model (M � 0.461), suggesting that a three-
parameter GeMM model is nearly as good as a nine-parameter
TTB model when evaluated in terms of the monotone correlation.
Why does TTB outperform GeMM and OLS on percent concor-
dance but not tau? This is the focus of Issue 2.

Issue 2: A Rational Model of Behavioral Choice
Should Maximize Correction Decisions but Minimize
Incorrect Decisions

Careful inspection of the data in Figures 7 and 8 (cities data)
highlights a curious finding: The percent of correct inferences
continues to increase even after the value of tau plateaus. How is
this possible? The answer lies in the nature of disconcordances, or
incorrect choices. Consider the following two equations:

P�C� � C/�C � D � TP � TC� (21)

�a � �C � D�/�C � D � TP � TC� (22)

where C, D, and T are defined as concordances, disconcor-
dances, and ties, with ties on the predictor denoted TP and ties
on the criterion denoted TC. C corresponds to a correct choice,
whereas D corresponds to an incorrect choice. Equation 21
gives the percent of correct choices, as indexed by the concor-
dances. Equation 22 is a variant of the version of Kendall’s tau
in Equation 9. For any class of objects, there are N(N � 1)/2
paired comparisons. Any paired comparison that is not a C or a
D is either a TP or a TC. As should be clear, the top formula
includes no penalty for an incorrect choice, whereas the bottom
does. Thus, whether a cue leads to a tie or to an incorrect choice
does not affect the value of P(C). To be clear, cues that
discriminate between any pair of objects can produce a C or a
D; for each paired comparison that is resolved as either a C or
a D, the value of TP is decreased by one. Thus, theoretically, it
is possible for P(C) to increase monotonically even if the
preponderance of paired comparisons resolved by a cue are

Figure 7. Probability of concordance for the estimation and cross-validation sample for the cities data.
GeMM � general monotone model; OLS-BIC � least squares with model selection using the Bayesian
information criterion; TTB � take-the-best model.
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disconcordant. We argue that any rational decision algorithm
should be penalized for making incorrect decisions. P(C) there-
fore provides one with a one-sided assessment of predictive
accuracy and can only be interpreted in the context of a metric
that takes into consideration incorrect choices, such as tau. In
this section, we illustrate that the TTB heuristic ignores the
impact of incorrect choices, whereas GeMM does not when the
value of BIC�� is minimized. As we illustrate below, following a
decision strategy that focuses solely on maximizing P(C) can come at
a cost of making a disproportionate number of incorrect choices.
However, explicitly accounting for incorrect choices in model selec-
tion using BIC�� can remedy this problem in GeMM and in TTB.

To illustrate, consider an environment in which one wishes to
predict Y from two variables, A and B. Suppose further that Cue A
results in 100 concordances and 25 disconcordances and leaves 200
dyads tied on the predictor. So, with Cue A, P(C) � 100/(100 � 25 �
200) �.307, and � � (100 � 25)/ (100 � 25 � 200) � .231. Now
consider what happens when a second variable is added to the pre-
diction equation that results in 20 additional concordances but 25
additional disconcordances: P(C) increases to 0.369 (120/(125 �
50 � 155), but tau decreases to .215 ([120 � 50]/[125 � 50 � 155]).
In other words, the 6% increase in correct choices was accompanied
by a nearly 8% increase in incorrect choices. Costs and benefits held
equal, it makes little sense for a rational decision maker to use Cue B
because it will result in more incorrect choices than correct choices. In
this case, ignorance is bliss. Yet, under TTB, Cue B would be used
and the disproportionate increase in incorrect choices would be tol-
erated. In contrast, when using BIC�� for model selection within
GeMM, any cue added to the model must result in a greater number

of concordances relative to disconcordances for it to be justifiably
included in the model.

As a real-world demonstration of the example given above, we
reanalyzed a data set, previously used to evaluate the accuracy of
TTB, that involved predicting professor salaries from a set of five
cues, including rank, years in current rank, year degree was earned,
sex, and highest degree obtained (see Gigerenzer et al., 1999; Lee
& Cummins, 2004). The data were dichotomized using a median
split to allow TTB to use all five cues. Using the full sample (N �
52), we ran GeMM, OLS-BIC, and TTB constraining the algo-
rithms to using k cues, where k was varied from 1 to 5. The results
of these analyses are presented in Figures 9 and 10. Two obser-
vations should be evident. First, there is an inverted U-shaped
function relating tau to the number of parameters for GeMM,
OLS-BIC, and TTB, and there is a monotonically increasing
function relating proportion of concordances to the number of
parameters. This suggests that the inclusion of more parameters in
any of the models does not automatically lead to an improvement
in choice behavior when incorrect choices are considered. In fact,
allowing TTB to search all five cues instead of the four best cues
led to an additional 31 correct choices (Cs) but at a cost of 56
incorrect choices (Ds). Second, and perhaps more interesting, the
Pearson’s r generally showed a monotonic increase as a function
of the number of parameters. Thus, if one were to simply maxi-
mize the number of concordances or the Pearson’s r, it would
result in a disproportionately large increase in incorrect choices. In
contrast, model selection using the BIC�� obviates this problem:
The best fit model in GeMM is the one that maximizes the
trade-off between correct and incorrect (pairwise) choices.

Figure 8. Mean Kendall’s tau for the estimation and cross-validation sample for the cities data. GeMM �
general monotone model; OLS-BIC � least squares with model selection using the Bayesian information
criterion; TTB � take-the-best model.
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Issue 3: Decision Models Based on Linear Least
Squares Optimization Can Yield Relatively Poor
Choice Behavior

As suggested earlier, the parameters required for minimizing the
squared error loss function need not correspond to the parameters
needed for minimizing rank order inversions. That is, it is possible
for the best fit linear model to account for the most variance, in the
traditional sense, and yet do relatively poorly at recovering the
rank order solution. Certainly, one should question the validity of
any metric solution that fails to recover the more primitive prop-
erty of ordinality, even if it shows a large R2. This point has
important implications for the standard applications of Brunswik’s
lens model that minimizes the squared error loss function.

To illustrate this point, we reanalyzed the cities data set using
both GeMM and OLS-BIC. When the full data set was used, the
best fit model based on OLS-BIC consisted of three parameters,
including the soccer team, exposition site, and national capital
cues, and accounted for 84.8% of the variance, but it yielded a
Kendall’s tau of 0.517 and a concordance rate of only 38.2%. The
best fit GeMM model also consisted of three parameters and
included the soccer team, intercity train line, and exposition site
cues. In contrast to the best fit linear OLS-BIC model, the best fit
GeMM model accounted for only 24.2% of the variance. However,
inspection of the P(C) and tau correlation revealed that GeMM
yielded a much higher rank-order correspondence than OLS, with
� � 0.548 and a concordance rate of P(C) � 55.4%. Thus, despite
the fact that OLS-BIC accounted for over 3 times more variance
than GeMM, it performed substantially worse in predicting the
rank orders and led to nearly 17% (55.4%–38.2%) fewer correct

choices. The striking contrast between GeMM and OLS-BIC dem-
onstrates a simple point: The least squares fitting criterion is not
designed with the goal of choice maximization. Perhaps even more
illuminating is the fact that the best fit OLS-BIC model was
actually qualitatively different than the best fit GeMM model, in
that they consisted of different predictors.

Although the above findings are of interest for purely statistical
reasons, they are also of central importance for the development of
prescriptive and descriptive models of choice. The linear model
has long been used as a paramorphic model of human decision
making and as the normative standard against which human accu-
racy is compared (Hogarth & Karelaia, 2007 Karelaia & Hogarth,
2008). However, it is clearly the case that a decision agent oper-
ating under the principle of maximizing choice accuracy may
utilize different information than a decision agent operating under
the principle of linear least squares.

General Discussion

We believe that the work presented in this paper illustrates the
potential benefits of bringing statistical models in line with the
precision of psychological theory and the (nonlinear) nature of
the manifest relations in much behavioral data. Using both simu-
lated and real data we demonstrated that GeMM successfully
models nonlinear relations without the need to make (overly)
precise assumptions about functional form. Moreover, when the
functional relation in the data is strictly linear, GeMM suffers
negligible losses in terms of power and predictive accuracy. Thus,
there seems to be much to gain and little to lose by adopting
GeMM as a model of statistical inference. We argued that beyond

Figure 9. Mean BIC�� plotted as a function of the number of parameters (k) for each strategy for the salary data.
GeMM � general monotone model; OLS-BIC � least squares with model selection using the Bayesian
information criterion; TTB � take-the-best model.
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its use as a statistical model, GeMM could be used as a prescriptive
and descriptive framework of judgment and decision making, and
then we illustrated this usefulness in identifying several critical
issues within behavioral decision theory.

Given the potential for linearities and nonlinearities in one’s
data, it is instructive to compare the costs and benefits of assuming
linearity with the costs and benefits of modeling data under the less
restrictive assumption of monotonicity. That is, what does one give
up by adopting the less restrictive assumption of monotonicity
when the true state of the data is linear? And, what does one give
up by adopting the assumption of linearity when the true state of
the data is nonlinear? The analyses presented in this paper suggest
that the answer to the first question is “very little.” As we showed
in the first set of analyses, even when data meet the assumptions
of linearity, one has little to lose by adopting the less restrictive
assumption of monotonicity and modeling data with GeMM. In
contrast, the cost of assuming linearity when linearity does not
hold can be considerable. Indeed, as we showed using both sim-
ulated and real data, applying the linear model to nonlinear data
can lead to a substantial reduction in statistical power and poorer
predictive accuracy.

One key insight gleaned from our development of GeMM is that
it is possible to model any monotonic statistical relationship with-
out making a priori assumptions of functional form. This is made
possible by exploiting the transformation on Kendall’s tau within
a model-based framework. The �-to-r transformation essentially
allows one to model any monotonic nonlinear relationship as
though it were linear but without fishing for the transformation that
best approximates linearity. This is a major insight, in that it frees

the researcher of deciding which, if any, transformation to use on
the criterion and eliminates the need to conditionalize statistical
conclusion on the choice of a particular transformation (e.g., when
two different transformations yield different conclusions). More-
over, because GeMM operates at the level of rank correlation
rather than squared deviations, the presence of outliers or extreme
scores is of less concern. In our view, using data transformations
to reshape the data so that they appear to fit the assumptions of a
statistical model is a bit like forcing a round peg into a square hole.
It makes more sense to use an algorithm appropriate for the data at
hand than to change the data to fit the statistical algorithm (see
Cliff, 1996). GeMM is an appropriate approach to statistical mod-
eling of psychological data because it does not require one to adopt
overly restrictive assumptions about functional form that may or
may not be represented in the data or population.

An important property of GeMM is that the fit criterion is based
on the minimization of rank-order inversions. The idea of mini-
mizing rank inversions is consistent with the goal of many applied
researchers, who seem less concerned about predicting precise
quantitative values than predicting relative values (i.e., rank order;
cf. Cliff, 1993, 1996). For example, in personnel selection con-
texts, it is advantageous to select individuals according to the rank
order of applicants, without regard to the quantitative properties of
the distribution of scores (Schmidt, 1995; see also Campion et al.,
2001). Moreover, even when quantitative values are available, they
are often re-expressed in terms of their ordinal or rank properties,
as exemplified by the use of percentile ranks when interpreting
standardized test scores, such as the WAIS or GRE, and the use of

Figure 10. Mean concordances (top panel) and mean taus (bottom panel) plotted as a function of the number
of parameters (k) for each strategy for the salary data. GeMM � general monotone model; OLS-BIC � least
squares with model selection using the Bayesian information criterion; TTB � take-the-best model.
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linear rank selection in personnel selection decisions (Schmidt,
1995).

Given that the goal of many applied domains is really to identify
ordinal relationships, it makes sense to model this property di-
rectly, rather than infer it from a least squares solution. In many
real-world applications, even a small difference in accurately pre-
dicting rank orders can yield large economic or health outcomes.
For example, consider health policies designed to identify individ-
uals most at risk for developing breast cancer or policies designed
to identify individuals prone to obesity or drug abuse. The differ-
ence of 2% in predicting the rank orders can mean the difference
between catching or missing critical high-risk cases. As our anal-
ysis of the cities data under Issue 3 illustrates, it is possible for the
linear model to substantially underperform GeMM in predicting
rank orders, even when the value of R2 is substantially higher than
that estimated by GeMM. Thus, a high value of R2 derived from
application of the linear model and assuming interval-level data
may give one the illusion that the ordinal properties of the data will
follow. However, this need not be the case as the least squared
solution is designed to minimize squared error, even if it comes at
a cost of mispredicting the ordinal properties of the data. Inasmuch
as prediction of ordinal properties is an applied goal, it makes more
sense to model the ordinal properties directly than to infer them
from the best fit linear model.

Aside from its implications for statistical decision making, our
development of GeMM highlighted a number of issues relevant to
theories of behavioral decision making. For example, we high-
lighted the need to control for global model complexity when
comparing different decision models. Inasmuch as parsimonious
models are preferred, parsimony should be explicitly accounted for
when assessing model fit. We illustrated that the predictive accu-
racy of a popular heuristic model of decision making, take the best
(TTB), depends on its global complexity (how many cues it is
allowed to search) and that TTB actually does worse than GeMM
when global complexity is explicitly modeled. Our conclusion,
therefore, is that noncompensatory decision heuristics such as TTB
can be advantageous but only when the amount of information
(cues) is unconstrained.

A second issue highlighted by our development of GeMM is the
need for decision models to explicitly account for incorrect choices
as well as correct choices. In past work, the focus of researchers
has been on the proportion of correct choices made by TTB.
However, the singular focus on correct choices obscures the curi-
ous property that more “accurate” models may also commit more
incorrect choices. We illustrated that it is possible for the incre-
mental validity of particular cues to be negative, in the sense that
using these cues can lead to more incorrect choices than correct
choices.

A third issue highlighted by GeMM is that decision models
based on linear least squares optimization can appear to perform
well when assessed in terms of R2 but yield relatively poor choice
behavior. This finding illustrates one of the primary limitations of
the linear model as a model of choice: It is not designed with the
goal of predicting the ordered relations and, therefore, will not tend
to maximize (pairwise) choice accuracy. Rather, its goal is to
minimize squared error, even if that comes at the cost of choice
accuracy.

Although the above findings illustrate the contribution of
GeMM to understanding models of decision making, the implica-

tions of GeMM for behavioral decision theory go well beyond
highlighting these three issues. Indeed, as we illustrate below,
GeMM allows for a fundamental reconceptualization of a variety
of theoretical frameworks within the decision sciences. We outline
of few of these extensions next.

Extensions to Models of Behavioral Choice

The analyses presented throughout this paper illustrate that
GeMM is useful both as a model for statistical inference and as a
descriptive model of behavioral choice. However, these analyses
have only scratched the surface of its generality. In this section, we
outline some natural extensions of GeMM and illustrate its rela-
tionship to various models of behavioral choice.

The majority of the work presented throughout the second half
of this paper has focused on two seemingly different approaches to
judgment and decision making: the lens model, as proposed by
Brunswik, and a heuristic-based approach, as advocated most
recently by Gigerenzer and colleagues (Gigerenzer & Goldstein,
1996; Gigerenzer et al., 1999; Goldstein & Gigerenzer, 2002).
Both of these approaches can be reconceptualized within the
context of GeMM. Doing so highlights a number of relationships
between heuristic algorithms and the lens model approach and also
allows us to identify novel variants of the heuristics.

The monotone lens model. One of the most widely used
frameworks for modeling decision behavior is the lens model
(Hammond et al., 1964; Hartwig & Bond, 2011; Hastie & Kameda,
2005; Hursch et al., 1964; Steinmann & Doherty, 1972; Tucker,
1964; York et al., 1987; for a review, see Karelaia & Hogarth,
2008). The lens model utilizes multiple linear regression to model
both the statistical relationships in the environment and how peo-
ple use information in inferring properties of the environment (i.e.,
judgment analysis; for a review, see Karelaia and Hogarth, 2008).
Indeed, in a recent review of lens model work, Karelaia and
Hogarth (2008) identified over 200 published and unpublished
studies using the lens model. This framework is presented in
Figure 11, and Table 3 presents interpretations of model con-
structs. However, we argue that the common use of linear regres-
sion in modeling human judgment is misplaced because there are
many potential sources of nonlinearities either in the environment
(i.e., the true relationships) or in the decision-making process
(Einhorn, 1970; Einhorn, Komorita, & Rosen, 1972; Kim, Yang, &
Kim, 2008).

What are the implications if the state of nature is in fact not
strictly linear but conforms to the less special case of monotonic-
ity? In such a case, the linear model is the wrong model and is
therefore estimating the wrong weights on the ecology and policy
dimensions of the lens model. Thus, deviations in the weights
estimated on the environment and the weights estimated on the
judge may arise either because the weighting scheme adopted by
the judge is ill calibrated with respect to the environment or
because the weights identified by the linear model are estimations
based on phantom properties of the environment—properties that
may not exist! That is, perhaps the linear model is the wrong
statistical model against which to compare and model human
behavior. Inasmuch as the manifest data are monotonic but not
linear, the weights estimated by multiple regression may poorly
characterize the judgment policy adopted by the decision maker,
the optimal policy suggested by the environment, or both. As
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illustrated under Issue 3, it is even possible for the best fit linear
model to be qualitatively different from the best fit monotone
model.

The obvious solution to this problem is to adopt a modeling
approach that captures monotonic properties but does not assume
strict linearity. Thus, we propose GeMM as a paramorphic model
of human judgment and decision making. Table 3 recasts the
common lens model decomposition in GeMM terms. For the
monotone lens model in Table 3 we have chosen to use the Pearson
correlation coefficient estimated via Kendall’s tau. Although we
could just as easily have captured the lens model components with
other measures of monotone association, the tau estimated Pearson
correlation can be interpreted as the standard lens model with the
linear estimate being derived under the less restrictive assumption
of monotonicity.

It is also important to point out that the traditional use of the lens
model has essentially ignored the issue of model complexity. Our
monotone lens model allows for a direct comparison between any
model from which paired comparison data can be obtained, in-
cluding the linear model relying on the BIC��. Thus, the fit–
parsimony trade-off is explicitly considered in terms of the BIC��.

In summary, there are many compelling reasons to prefer a
monotone lens model. First, linearity is a special case of monoto-
nicity, and, as illustrated by the simulation work, GeMM shows
little loss in statistical power when data are linear. The monoto-
nicity assumption also allows for more flexibility and robustness,
as illustrated in simulation by GeMM’s substantial power advan-
tage as data become increasingly nonlinear but remain monotonic.
Finally, when assuming linearity and using least squares optimi-
zation, one implicitly endorses a fit metric that tolerates rank
inversions in order to minimize squared deviations. This trade-off
is not defensible, in our opinion, because rank is a more funda-
mental measurement property than distance.

Heuristics as monotone decision algorithms. Although
GeMM can be considered a monotone version of the lens model,
it can also be viewed as a general framework for organizing both
compensatory and heuristic models of decision making. Several
decision models are closely related to or can be expressed as
special cases of GeMM; moreover, our development of GeMM
highlights several variations on existing heuristic models and
suggests new models.

Table 4 presents several decision models that fit within the
GeMM framework: the lens model, Franklin’s rule, Dawes’ rule,
TTB, and minimalist. For example, TTB can be viewed as a
variant of GeMM in which one searches through a set of one-
parameter models from best to worst until one model discrimi-
nates. That is, define a regression model based on GeMM with P
parameters (cues). TTB is related to GeMM in that there are P
one-parameter models nested within GeMM’s P-parameter model.
TTB differs from GeMM only in the sense that the decision maker
is assumed to order the P one-parameter models by validity and
search them one at a time. Both Dawes’ rule (the equal weights
additive rule, or ADD) and Franklin’s rule (weighted additive rule,
or WADD) can also be considered special cases of GeMM. Both
assume that the decision maker chooses between alternatives by
combining cues. In the case of Dawes’ rule, the cues are
combined additively (summed) with equal weight. In the case of
Franklin’s rule, the cues are weighted by importance before
summing (multiple regression is Franklin’s rule where the
weights are optimized via least squares estimation). Pairwise
choice in both models assumes that the decision maker chooses
the alternative with the highest sum. WADD and ADD have
been investigated extensively as models of choice (Bröder,
2002; Bröder & Schiffer, 2003; Payne, Bettman, & Johnson,
1992, 1993). Conceptualized within GeMM, these are merely
saturated models that assume that participants combine all

Figure 11. Illustration of the classic lens model framework. The lens model parameters illustrated are
described in Table 3.
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possible cues (with different weighting schemes) in choosing
between alternatives. Note that none of these heuristics explic-
itly attempt to maximize choice accuracy.

Also represented in Table 4 is the Borda count, which is a
voting rule for social preferences in which N choice options are
ranked by individuals, where the highest ranked alternative is

assigned a ranking of N, the second highest ranked alternative
is assigned a value of N � 1, and so forth (Borda, 1784). The
winner of a Borda count is the alternative with the highest
summed rank. The Borda count is easily expressed as a special
case of GeMM, where the predictor variables are viewed as
voters, and each voter provides a ranking of all N alternatives.

Table 3
Descriptions of the Lens Model Components in the Original Linear Model and Recast Within GeMM

Linear lens model
component Standard description

Monotone lens
model component Monotone description

X� Cues are assumed to be metric. X� Cues are assumed to be ordinal or metric.
rS� Best-fit linear regression coefficients for each cue

regressed on the judge’s evaluations. The number of
statistically significant cues is often interpreted as the
frugality or complexity of the judge’s policy, and the
magnitude of the linear regression coefficients is
interpreted as the extent to which the cues were
utilized in the judge’s policy.

r�S� Best-fit monotone regression coefficients, estimated
via GeMM for each cue regressed on the judge’s
evaluations. The number of cues in the best fit
model, using BIC� to trade fit and complexity,
can be interpreted as the frugality of the judge’s
policy, and the magnitude of the monotone
regression coefficients is interpreted as the extent
to which the cues were utilized in the judge’s
policy.

re� Best-fit linear coefficients for each cue regressed on the
criterion. The statistical significance and the
magnitude of the linear coefficients are interpreted as
the validity of the cues to predict the criterion
variable.

r�e� Best-fit monotone regression coefficients, estimated
via GeMM for each cue regressed on the
criterion. The number of cues in the best-fit
model, using BIC�

’ to trade fit and complexity,
and the magnitude of the monotone regression
coefficients are interpreted as the validity of the
cues to predict the criterion variable.

YS Judgments are assumed to be metric. YS Judgments are assumed to be ordinal or metric.
Ye The criterion variable is assumed to be metric. Ye The criterion is assumed to be ordinal or metric.
ŶS The predicted values of the best-fit linear model of the

cues regressed on the judge’s judgments.
Ŷ�S The predicted values of the best-fit GeMM model

of the cues regressed on the judge’s judgments.
Ŷe The predicted values of the best-fit linear model of the

cues regressed on the criterion.
Ŷ�e The predicted values of the best-fit GeMM model

of the cues regressed on the criterion.
RS Coefficient of determination of the best-fit linear model

of the cues regressed on the judge’s judgments. Also,
the Pearson correlation coefficient between the
predicted values of the judge’s judgments, estimated
via linear regression, and the observed judgments.
The metric is often interpreted as the ability or fit of
the linear model to capture the judgment process.

R�S The Kendall’s tau estimate of the Pearson product
moment correlation coefficient, r, between the
predicted values of the judge’s judgments,
estimated via GeMM regression, and the
observed judgments. The metric can be
interpreted as the ability or fit of the monotone
model to capture the judgment process.

Re Coefficient of determination of the best-fit linear model
of the cues regressed on the criterion. Also, the
Pearson correlation coefficient between the predicted
values of the criterion, estimated via linear
regression, and the observed criterion. The metric is
often interpreted as the ability or fit of the linear
model to capture the ecology.

R�e The Kendall’s tau estimate of the Pearson product
moment correlation coefficient, r, between the
predicted values of the criterion, estimated via
GeMM regression, and the observed criteria. The
metric can be interpreted as the ability or fit of
the monotone model to capture the ecology.

ra The Pearson correlation between the judge’s judgments
and the observed criterion. The measure is
interpreted as the quality or accuracy of the judge to
predict the criterion values in terms of variance-
accounted-for.

r�a The Kendall’s tau estimate of the Pearson product
moment correlation coefficient, r, via GeMM
regression, between the criteria and the judge’s
judgments. The measure can be interpreted as the
quality or accuracy of the judge to predict the
criterion values.

rm Often referred to as match, the correlation between the
predicted values of the judge’s judgments and the
predicted values of the criterion.

r�m The monotone surrogate of match, the Kendall’s tau
estimate of the Pearson correlation between the
predicted values of the judge’s judgments and the
predicted values of the criterion estimated via
GeMM.

rij The intercue correlations between the predictors or
cues.

r�ij The Kendall’s tau estimate of the Pearson product
moment correlation coefficient, r, between the
predictors or cues. In process terms, cues that are
highly correlated are assumed to substitute for
each other—a process referred to as vicarious
functioning.

Note. GeMM � general monotone model.
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Within GeMM, any data set can be expressed as a Borda count
by (a) rank transforming the predictors, (b) assigning unit
weights to the predictors such that each “voter” is counted
equally, and (c) summing across all predictors. The alternative
with the highest summed ranks is the Borda winner. A natural
extension of the Borda count suggested by GeMM that is not
represented in Table 4 is a weighted Borda count, where each

voter is weighted by a validity coefficient derived from a test
sample. A reasonable application of the weighted Borda count
would involve any prediction task where judges with various
levels of expertise or knowledge are predicting the outcome of
a contest. Weights estimated from an estimation sample could
be taken as an index of each judge’s validity (cf. Ho, Hull, &
Srihari, 1994).

Table 4
Decision Models and Relation to GeMM

Model Description No. parameters (K) Model selection procedure

TTB Define all possible 1-parameter models.
Order models according to predictive
validity. For each paired comparison,
search models from best to worst until one
discriminates between the pair of options.

K � number of models required
to discriminate all possible
dyads.

None. Use all possible models
sequentially.

TTB–select Define all possible 1-parameter models.
Order models according to predictive
validity. Select subset of models that
minimize BIC. For each paired
comparison, search selected models from
best to worst until one discriminates
between the pair of options.

K � number of models required
to minimize the BIC��.

Estimate � based on
concordances and
disconcordances. Transform �
to r, use Equation 19 or any
other model selection
procedure that trades
parsimony for fit.

Minimalist Define all possible 1-parameter models. For
each paired comparison, randomly choose
model until one discriminates between the
pair of options.

K � number of models required
to discriminate all possible
dyads.

None

Minimalist–select Define all possible 1-parameter models.
Select a subset of models that minimize
BIC. For each paired comparison,
randomly choose a model from the
selected set until one discriminates
between the pair of options.

K � number of models required
to minimize the BIC��.

Estimate � based on
concordances and
disconcordances. Transform �
to r, use Equation 19 or any
other model selection
procedure that trades
parsimony for fit.

Franklin’s rule (weighted
additive model)

Define weight vector. Sum product of weight
vector by data vector. Multiple regression
is the special case where the weight vector
is optimized by minimizing least squares.

K � total number of variables
in the data set.

Franklin’s rule–select Define weight vector. Sum product of weight
vector by data vector. Multiple regression
is the special case where the weight vector
is optimized by minimizing least squares.

K � number of variables
included in the model with
the lowest BIC��.

Estimate � based on
concordances and
disconcordances. Transform �
to r, use Equation 19 or any
other model selection
procedure that trades
parsimony for fit.

Dawes’ rule (unit weight
additive model)

Set weight vector to unit values (1, 0, �1).
Sum product of weight vector by data
vector.

K � total number of variables
in the data set.

None. Use all predictor variables
simultaneously.

Dawes’ rule–select Set weight vectors to unit values. Sum
product of weight vector by data vector.

K � number of variables
included in the model with
the lowest BIC��.

Estimate � based on
concordances and
disconcordances. Transform �
to r, use Equation 19.

Borda count Set weight vectors to unit values. Rank
transform the predictors. Sum product of
weight vector by data vector.

K � number of predictors
(voters) in the data set.

None. Use all predictor variables
simultaneously.

TTB-GeMM Define all possible K � 1 parameter models.
Order models according to BIC��. For each
paired comparison, search models from
best to worst until one discriminates
between the pair of options.

— —

Minimalist-GeMM Define all possible K � 1 parameter models.
For each paired comparison, randomly
choose model without until one
discriminates between the pair of options.

— —

Note. GeMM � general monotone model; TTB � take the best; BIC � Bayesian information criterion; BIC�� � Bayesian information criterion based on
the weighted �-to-r transformation.
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In addition to providing an organizing framework for the above
choice rules, GeMM highlights several novel variations of these
heuristics. In particular, each of the models described above can be
coupled with a model selection procedure that trades fit for parsi-
mony. For example, TTB-select and minimalist-select use the
BIC�� to reduce complexity. As well, these models can be naturally
extended to include any possible parameterization, so that the
TTB search algorithm can operate on any ordered set of models
containing k � 1 parameters (TTB-GeMM and minimalist-
GeMM). For example, under a GeMM formulation, one can
order all possible two-parameter models and search them se-
quentially using TTB’s search and stopping rules. Precisely
how to define the value for number of parameters (K) and how
to select among competing models is yet unclear, so these are
left blank in the table. Nevertheless, these are valid decision
heuristics that should be explored.

Summary

The work presented in this paper illustrates the potential
benefits of modeling psychological data without recourse to
making strong and often untenable assumptions about ones data
and without the need for employing data intervention strategies
aimed at bringing the data in line with the assumptions of a
statistical model. Rather, we argue that a more appropriate
approach to data analysis is to utilize a modeling approach that
respects the fundamental properties of one’s data. GeMM ac-
complishes just this. GeMM is based on the principle of mono-
tonicity and as such requires much less restrictive assumptions
about the modeled relationship. Thus, GeMM permits one to
capture the (nonlinear) nature of the manifest relations that exist
in much behavioral data and to model the data at a level of
precision that is consistent with the precision of most psycho-
logical theories.
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Appendix

Implementation Details for the Least Squares Procedures in the Analysis of Cognitive
Ability Data

The model competition for modeling the Engle et al. (1999) cog-
nitive ability data included GeMM, OLS-BIC, OLS-Wald, and four
additional techniques including two versions of robust regression (one
using the Huber weighting function and one using the bi-square
weighting function), Bayesian regression with normal priors, and
ridge regression. Robust regression is a technique used in contexts for
reducing the impact of extreme scores and is therefore less sensitive
to the presence of outliers. Both robust procedures were implemented
within MatLab using a WALD test. The Bayesian and ridge regres-
sion procedures were implemented in SAS, with code written by the
authors. The Bayesian model used normal priors with variable selec-
tion based on the Wald 95% credible interval. We implemented ridge
regression, which is a variant of OLS that applies a shrinkage penalty,
lambda, to the predictors. Although this penalty slightly biases the
parameter estimates, it can lead to substantial decreases in their
variance when the predictors are highly collinear. We employed a
variant of the BIC (see Equation A1) to select the lambda for each
estimation sample that optimally traded fit (residual sums of squares;
RSS) with a measure of flexibility (effective df). The parameter
estimates associated with the best fit lambda were then applied to the
cross-validation sample.

BIC� � log RSS� � df�/n log n, where df�

� trace
X�XtX � �I��1Xt� (A1)

For all procedures, we randomly sampled 50% of the total
sample to form an estimation sample and used the remaining
50% as the holdout (cross-validation) sample. For each run, we
estimated the model on the estimation sample and then applied
the statistical model to predict observations in the cross-
validation sample. This was repeated 200 times for each ap-
proach. For the sake of comparison, we used the model based on
the full sample as the criterion for evaluating statistical power.
When the full sample was used, five approaches (OLS-BIC,
OLS-Wald, Huber robust least squares, bi-square robust least
squares, and Bayesian-Wald) identified a two-parameter model
consisting of quantitative SAT and Cattell’s culture fair test as
the best fit model for predicting Raven’s Progressive Matrices.
Ridge regression is not typically implemented within a variable
selection algorithm, so it was implemented by including all nine
predictors. Table 1 presents the fit indices from the cross-
validation exercise. Table 2 presents the probability that each
parameter was recovered for N/2.
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